Data Conversion and Lab (17.368)

Fall 2013

Lecture Outline

Class # 11

November 14, 2013

Dohn Bowden

Today's Lecture Outline

- Administrative
- Detailed Technical Discussions
 - Microcontroller and Sensors
- Lab
 - Lab #4 ... due TONIGHT ... 11/14/13
 - Lab #6 (there is no Lab #5) ... due 11/21/13 ... NEXT WEEK
- Homework

Course Admin

Administrative

- Admin for tonight ...
 - Syllabus Highlights
 - Start/continue Lab #6
- EXAM #2 is NEXT WEEK ... 11/21/13

Syllabus Review

Week	Date	Topics	Lab	Lab Report Due
1	09/05/13	Introduction/Basic Data Conversion, Course Overview, Op Amps in Data Conversion		
-2	09/12/13	Op Amp Lab	1	
-3	09/19/13	Sample and Hold Lecture and Lab	2	
4	09/26/13	A/D Conversion Fundamentals and Lab	3	1
5	10/03/13	A/D Conversion Lab Continuation	3 con't	
-6	10/10/13	Examination 1		
-7	10/17/13	D/A Conversion Fundamentals and Lab	3	
8	10/24/13	D/A Conversion Lab Continuation	4	2
,	10/31/13	V/F and F/V Conversion Lecture	4 con't	
10	11/07/13	Lab Only – No Lecture	6	3
11	11/14/13	Microcontroller and Sensors	6 con't	4
12	11/21/13	Examination 2	Project	<i>,</i> 6
X	11/28/13	No Class – Thanksgiving		
13	12/05/13	Work on Course Project	Project	
14	12/12/13	Final Exam/Course Project Brief and Demonstration	Demo	

Detailed Technical Discussion

References ...

Lecture material is covered in ...

- Data Sheet for the PIC16F684
 - Located on the webpage

Microcontrollers and Microcontroller ADC Functions

General Overview ...

General Overview

- The intent is not to teach microcontrollers ...
 - Rather ... introduce you to one of it's internal functions
- PIC microcontrollers are taught in detail in ...
 - Microprocessors A (17.383) and Microprocessors B (17.384)
- I am utilizing material/slides from those courses in this lecture
- Additionally ... I will not talk about programming the microcontroller

Embedded Systems ...

Embedded Systems

- An *embedded system* is a combination of computer hardware and software, designed <u>to perform a dedicated function</u>
 - Examples ... microwave oven, digital watch, video game player
- The design of an embedded system to perform a dedicated function is in direct contrast to that of the personal computer
 - A personal computer is <u>not designed to perform a specific</u> <u>function</u>, rather it is able to do many things

Embedded Developer

- The embedded developer needs to understand ...
 - Hardware
 - Code
 - Peripheral interfaces

The Basics ...

Basic Microcontroller facts

- What is a Microcontroller?
 - An inexpensive single chip computer
 - Single chip means ... that the entire computer lies within the confines of the integrated circuit
 - The microcontroller is capable of storing and running a program (its most important feature)

Basic Microcontroller facts

- Why use a Microcontroller?
 - Its ability to store and run unique programs makes it extremely versatile
 - A microcontroller can be programmed to make decisions and perform functions based on predetermined situations (I/O line logic) and selections
 - Its ability to perform math and logic functions allows it to mimic sophisticated logic and electronic circuits
 - Microcontrollers are responsible for intelligence in most smart devices on the consumer market

Basic Microcontroller facts

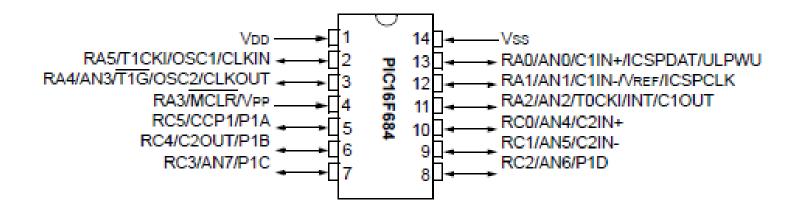
- The PIC Chip
 - Microchip's microcontrollers are commonly called PIC chips
 - Microchip uses PIC to describe its series of PIC microcontrollers
 - The PIC microcontroller was originally designed as a Peripheral Interface Controller (PIC) for a 16 bit microprocessor
 - It was essentially an I/O controller and was designed to be very fast
 - It had a small micro-coded instruction set
 - This design became the basis for the Microchip Technology's PIC family of microcontrollers

Hardware ...

Getting to Know the Hardware

- Before writing software for an embedded system ...
 - You must be familiar with the hardware on which it runs
- Understand ...
 - General operation of the system
 - What the inputs are
 - What the outputs are
 - etc
- Initially you don't need all the details of the hardware, but it is helpful

The Processor

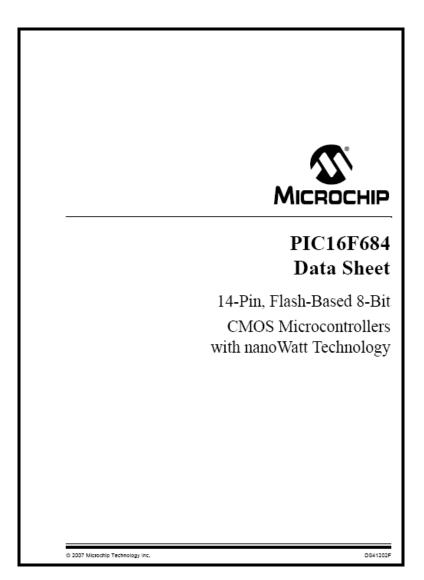

- Review the datasheets
- What internal functions does the processor have?
 - *ADC*?
 - Comparators?
 - Etc.
- What is connected to it?
- How does it communicate with those interfaces?
- Memory Mapping
- Initializing the processor

PIC Microcontroller of Interest to Us

- Microchip PIC microcontroller ...
 - PIC16F684
- The PIC16F684 is ...
 - A fourteen-pin microcontroller

PIC16F684 Pin Diagram

14-pin PDIP, SOIC, TSSOP


PICkit[™] 3 – Used to Program the PIC

PICkit[™] 3

- PICkit[™] 3
- Provides
 - Programming
 - Evaluation
 - And development
- In one simple to use design

PIC16F684 Data Sheet

PIC16F684 Features

- 35 Instructions
- 8-level deep hardware stack
- 2048 Flash (words) Program Memory
- Interrupt capability
- 12 I/O pins with individual direction control
- 2 Comparators
- A/D Converter (10-bit resolution and 8 channels)
- 2 Timers

PIC16F684 Features

Device	Program Memory	Data M	lemory	1/0	10-bit A/D (ch)	Comparators	Timers 8/16-bit
Device	Flash (words)	SRAM (bytes)	EEPROM (bytes)	10			
PIC16F684	2048	128	256	12	8	2	2/1

Analog Signals

• As we have discussed ... real world signals are analog

– For example ... sensors

- We need to be able to take these signals and convert them to digital in order to be able to process them using the microcontroller
- The PIC16F684 is capable of performing the required conversion with it's built in analog to digital converter

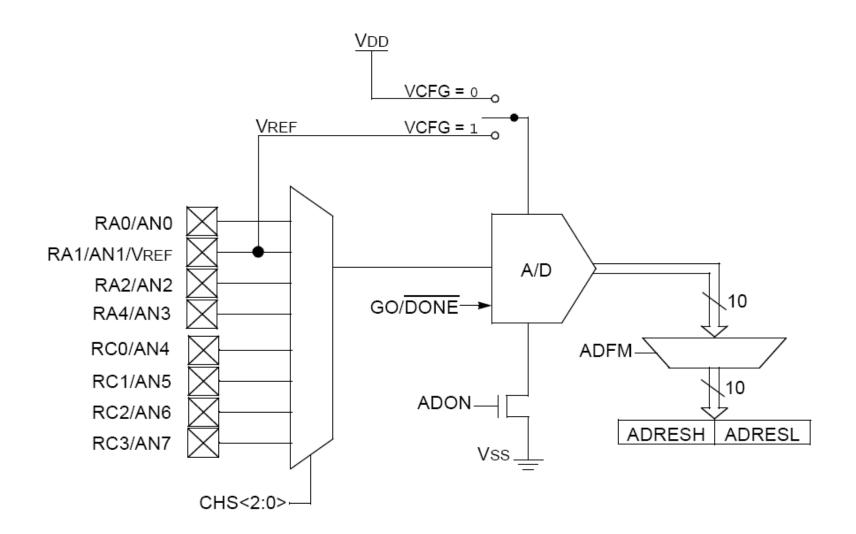
The PIC16F684 Analog-to-Digital Converter

- Contains a Successive-approximation-register (SAR) type Analog to Digital converters
 - 10-bit resolution
- 8 channels
 - Meaning it can evaluate 8 different analog inputs
 - » One at a time

The **PIC16F684 Analog-To-Digital** Converter Module **Specifics**

ANALOG-TO-DIGITAL CONVERTER (A/D) MODULE

- The PIC16F684 Analog-to-Digital converter (A/D) allows
 - Conversion of an analog input signal to a 10-bit binary representation of that signal
- The PIC16F684 has eight analog inputs,
 - multiplexed into one sample and hold circuit
- The output of the sample and hold is connected to the input of the converter


ANALOG-TO-DIGITAL CONVERTER (A/D) MODULE (con't)

- The converter generates a binary result via successive approximation ... and ...
 - Stores the result in a 10-bit register
- The voltage reference used in the conversion is software selectable to either ...
 - VDD

or

– A voltage applied by the V_{REF} pin

A/D BLOCK DIAGRAM

Configuring The PIC16F684 A/D Module

- To use the feature we will need to configure the device
- To configure the PIC16F684 ... three registers need to be setup
 - ANSEL (Analog Select Register)
 - ADCON1 (A/D Control Register 1)
 - ADCON0 (A/D Control Register 0)

REGISTER 9-1: ANSEL – ANALOG SELECT REGISTER (ADDRESS: 91h)

| R/W-1 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| ANS7 | ANS6 | ANS5 | ANS4 | ANS3 | ANS2 | ANS1 | ANS0 |
| bit 7 | | | | • | | | bit 0 |

bit 7-0: ANS<7:0>: Analog Select bits

Analog select between analog or digital function on pins AN<7:0>, respectively.

- 1 = Analog input. Pin is assigned as analog input⁽¹⁾.
- 0 = Digital I/O. Pin is assigned to port or special function.
 - **Note 1:** Setting a pin to an analog input automatically disables the digital input circuitry, weak pull-ups, and interrupt-on-change if available. The corresponding TRIS bit must be set to input mode in order to allow external control of the voltage on the pin.

Legend:				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

ANSEL (Analog Select)

- Controls the operation of the A/D port pins
- Channel Selection (selects one of eight analog channels)
 - ANS0 through ANS7
- We must also set the corresponding TRIS bits to Input mode

Note:	Analog voltages on any pin that is defined								
	as a digital input may cause the input								
	buffer to conduct excess current.								

REGISTER 9-3: ADCON1 – A/D CONTROL REGISTER 1 (ADDRESS: 9Fh)

U-0	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0
	ADCS2	ADCS1	ADCS0	—			
bit 7							bit 0

bit 7: Unimplemented: Read as '0'

bit 6-4: ADCS<2:0>: A/D Conversion Clock Select bits

- 000 = Fosc/2
- 001 = Fosc/8
- 010 = Fosc/32
- x11 = FRC (clock derived from a dedicated internal oscillator = 500 kHz max)
- 100 = Fosc/4
- 101 = Fosc/16
- 110 = Fosc/64
- bit 3-0: Unimplemented: Read as '0'

Legend:							
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown				

ADCON1 (A/D Control Register 1)

- Bit 6-4 Conversion clock select bits
 - An accurate conversion requires a time of 1.6 µs or greater
 - There is no point making this too much longer
 - The internal oscillator provides a conversion time of approximately 4 µs, although this can vary between 2 and 6µs
 - We are using the internal oscillator, therefore we will use the A/D RC option (111)
- No other bits are used in this register

TAD VS. DEVICE OPERATING FREQUENCIES

TABLE 9-1: TAD VS. DEVICE OPERATING FREQUENCIES

A/D Clock	Source (TAD)	Device Frequency					
Operation ADCS2:ADCS0		20 MHz	5 MHz	4 MHz	1.25 MHz		
2 Tosc	000	100 ns ⁽²⁾	400 ns ⁽²⁾	500 ns ⁽²⁾	1.6 μs		
4 Tosc	100	200 ns ⁽²⁾	800 ns ⁽²⁾	1.0 μs ⁽²⁾	3.2 μs		
8 Tosc	001	400 ns ⁽²⁾	1.6 μs	2.0 μs	6.4 μs		
16 Tosc	101	800 ns ⁽²⁾	3.2 μs	4.0 μs	12.8 μs ⁽³⁾		
32 Tosc	010	1.6 μs	6.4 μs	8.0 μs ⁽³⁾	25.6 μs ⁽³⁾		
64 Tosc	110	3.2 μs	12.8 μs ⁽³⁾	16.0 μs ⁽³⁾	51.2 μs ⁽³⁾		
A/D RC	x11	2-6 μs ^(1,4)	2-6 μs ^(1,4)	2-6 μs ^(1,4)	2-6 μs ^(1,4)		

Legend: Shaded cells are outside of recommended range.

- **Note 1:** The A/D RC source has a typical TAD time of 4 μ s for VDD > 3.0V.
 - 2: These values violate the minimum required TAD time.
 - 3: For faster conversion times, the selection of another clock source is recommended.
 - 4: When the device frequency is greater than 1 MHz, the A/D RC clock source is only recommended if the conversion will be performed during Sleep.

REGISTER 9-2: ADCONO – A/D CONTROL REGISTER (ADDRESS: 1Fh)

-n = Value at POR

	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
	ADFM	VCFG	_	CHS2	CHS1	CHSO	GO/DONE	ADON	
	bit 7	<u> </u>		<u> </u>				bit 0	
bit 7	ADFM: A/D Result Formed Select bit 1 = Right justified 0 = Left justified								
bit 6	VCFG: Voltage Reference bit 1 = VREF pin 0 = VDD								
bit 5	Unimplem	ented: Rea	d as '0'						
bit 4-2	CHS<2:0>: Analog Channel Select bits 000 = Channel 00 (AN0) 001 = Channel 01 (AN1) 010 = Channel 02 (AN2) 011 = Channel 03 (AN3) 100 = Channel 04 (AN4) 101 = Channel 05 (AN5) 110 = Channel 06 (AN6) 111 = Channel 07 (AN7)								
bit 1	 GO/DONE: A/D Conversion Status bit 1 = A/D conversion cycle in progress. Setting this bit starts an A/D conversion cycle. This bit is automatically cleared by hardware when the A/D conversion has completed. 0 = A/D conversion completed/not in progress 								
bit 0	ADON: A/D Conversion Status bit 1 = A/D converter module is operating 0 = A/D converter is shut-off and consumes no operating current								
	Legend:								
	R = Reada	ble bit	W = W	/ritable bit	U = Unir	nplemented	bit, read as '	C'	

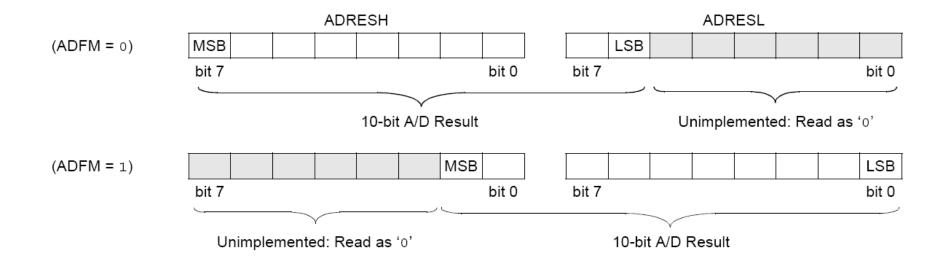
'1' = Bit is set

'0' = Bit is cleared

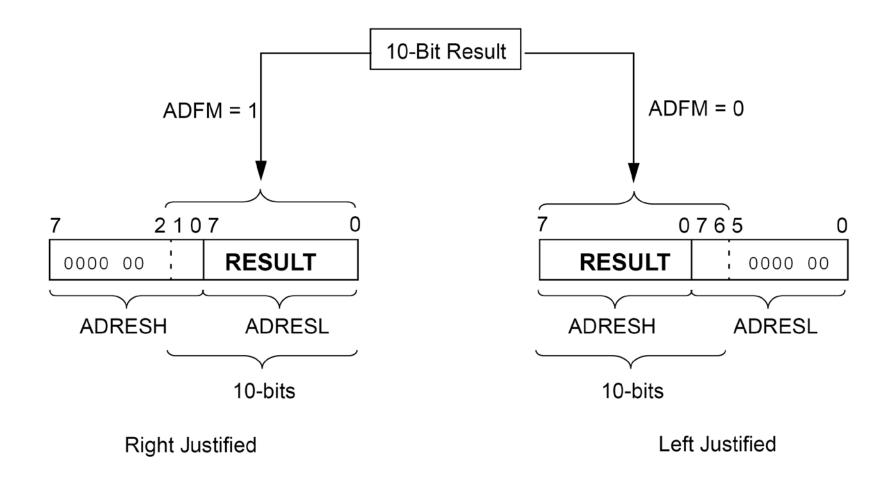
x = Bit is unknown

ADCONO (A/D Control Register 0)

- Bit 0
 - Turns on or off the A/D converter
 - 1 = On
 - 0 = Off
- Bit 4-2
 - Selects the channel to use (ANO AN7)
- Bit 6
 - Selects where the reference voltage is from
- Bit 7
 - Results format (right or left justified)


VOLTAGE REFERENCE

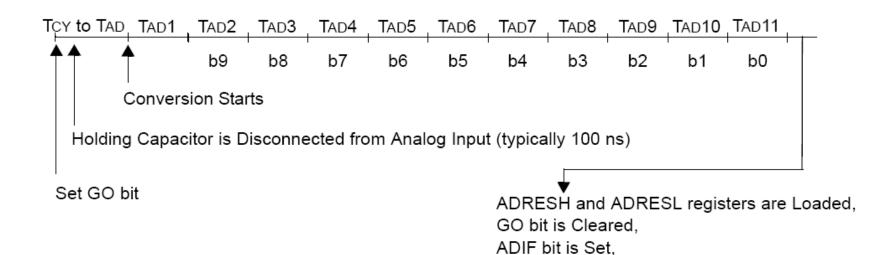
- There are two options for the voltage reference to the A/D converter ... either ...
 - VDD is used ... or ...
 - An analog voltage applied to V_{REF}
- The VCFG bit (ADCON0<6>) controls the voltage reference selection
 - If VCFG is set ... then the voltage on the VREF pin is the reference
 - otherwise, VDD is the reference.


CONVERSION OUTPUT

- The A/D conversion can be supplied in two formats ...
 - Left ...
 - or right shifted
- The ADFM bit (ADCON0<7>) controls the output format
- The next slide shows the output formats

10-BIT A/D RESULT FORMAT

10-BIT A/D RESULT FORMAT


STARTING A CONVERSION

- The A/D conversion is initiated by setting the GO/DONE bit (ADCON0<1>)
- When the conversion is complete, the A/D module ...
 - Clears the GO/DONE bit
 - Sets the ADIF flag (PIR1<6>)
 - Generates an interrupt (if enabled)

ABORTING A CONVERSION

- If the conversion must be aborted, the GO/DONE bit can be cleared in software.
- The ADRESH: ADRESL registers will not be updated with the partially complete A/D conversion sample ...
- Instead, the ADRESH: ADRESL registers will retain the value of the previous conversion
- After an aborted conversion ... a 2 TAD delay is required before another acquisition can be initiated.
- Following the delay, an input acquisition is automatically started on the selected channel

A/D CONVERSION TAD CYCLES

49

Holding Capacitor is Connected to Analog Input

CONFIGURING THE A/D

- After the A/D module has been configured as desired ...
 - the selected channel must be acquired before the conversion is started
- The analog input channels must have their corresponding TRIS bits selected as inputs
- After this sample time has elapsed ...
 - the A/D conversion can be started

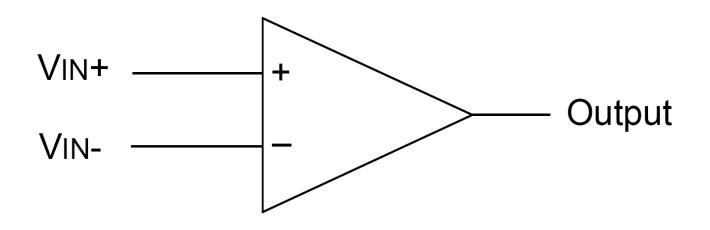
Steps to Follow for A/D Conversion

- 1. Configure the A/D module
- 2. Configure A/D interrupt (if desired)
- 3. Wait the required acquisition time
- 4. Start conversion
- 5. Wait for A/D conversion to complete
- 6. Read A/D Result register pair
- 7. For the next conversion ... go to step 1 or step 2 as required

Microcontroller Comparator Function

PIC16F684 Hardware

- Another analog interface function of the PIC16F684
 - Comparators


Comparator Fundamentals

- Compares the voltage level of two analog signals ... and ...
 - Identifies which signal is the largest

The PIC16F684 Comparator Module

- Dual comparators
- Multiple comparator configurations
- Comparator outputs are available internally/externally
- Programmable output polarity
- Interrupt-on-change
- Wake-up from Sleep
- Timer1 gate (count enable) ONLY C2 CAN BE LINKED TO TIMER1
- Output synchronization to Timer1 clock input
- Programmable voltage reference

PIC16F684 Comparators

- When the analog voltage at VIN+ is < the analog voltage at VIN- ...
 - The output of the comparator is a digital low level
- When the analog voltage at VIN+ is > the analog voltage at VIN- ...
 - The output of the comparator is a digital high level

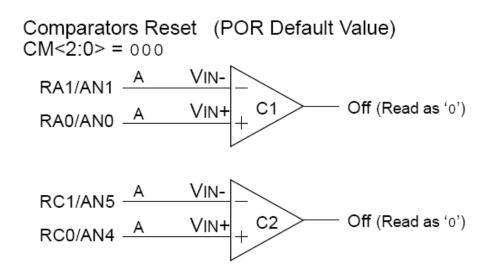
PIC16F684 Comparator Configuration

- There are eight modes of operation for the comparator
 - 1. Comparators Reset
 - 2. Three Inputs Multiplexed to Two Comparators
 - 3. Four Inputs Multiplexed to Two Comparators
 - 4. Two Common Reference Comparators
 - 5. Two Independent Comparators
 - 6. One Independent Comparator
 - 7. Two Common Reference Comparators with Outputs
 - 8. Comparators Off
- The CM<2: 0> bits of the CMCON0 register are used to select these modes
- I/O lines change as a function of the mode

PIC16F684 Comparator Modes of Operation (CMCONO) Register

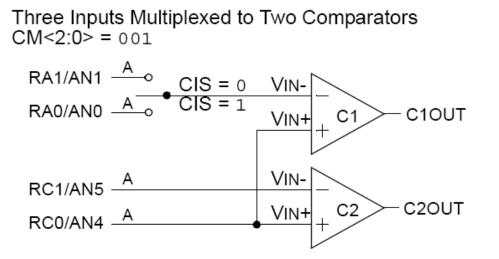
1. Comparators Reset –

CM < 2: 0 > = 000

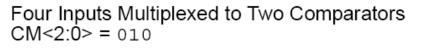

2. Three Inputs Multiplexed to Two Comparators – CM<2: 0> = 001

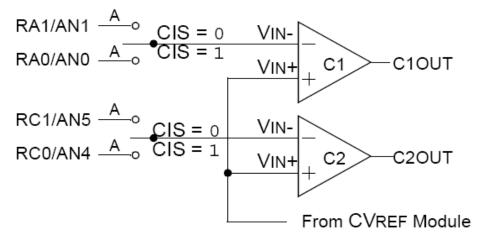
3. Four Inputs Multiplexed to Two Comparators – CM<2: 0> = 010

- 4. Two Common Reference Comparators CM<2: 0> = 011
- 5. Two Independent Comparators CM < 2: 0 > = 100
- 6. One Independent Comparator CM<2: 0> = 101
- 7. Two Common Reference Comparators with Outputs CM<2: 0> = 110
- 8. Comparators Off –

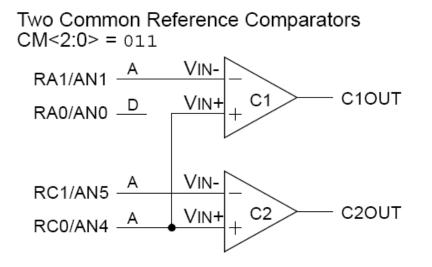

CM < 2: 0 > = 111

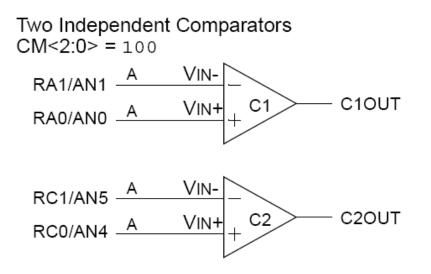
PIC16F684 Comparator Modes of Operation Comparators Reset - CM<2: 0> = 000


Legend: A = Analog Input, ports always read '0' D = Digital Input

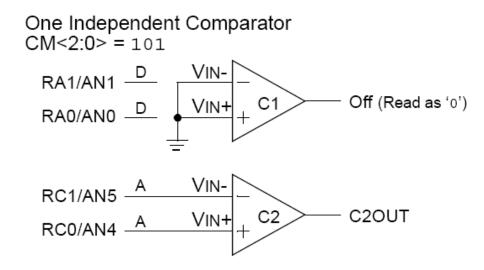

PIC16F684 Comparator Modes of Operation Three Inputs Multiplexed to Two Comparators – CM<2: 0> = 001

Legend: A = Analog Input, ports always read '0' D = Digital Input

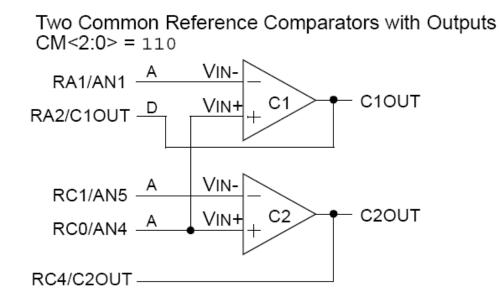

PIC16F684 Comparator Modes of Operation Four Inputs Multiplexed to Two Comparators – CM<2: 0> = 010


Legend: A = Analog Input, ports always read '0' D = Digital Input

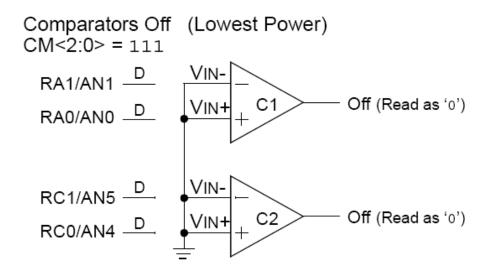
PIC16F684 Comparator Modes of Operation Two Common Reference Comparators – CM<2: 0> = 011


Legend: A = Analog Input, ports always read '0' D = Digital Input

PIC16F684 Comparator Modes of Operation Two Independent Comparators – CM<2: 0> = 100


Legend: A = Analog Input, ports always read '0' D = Digital Input

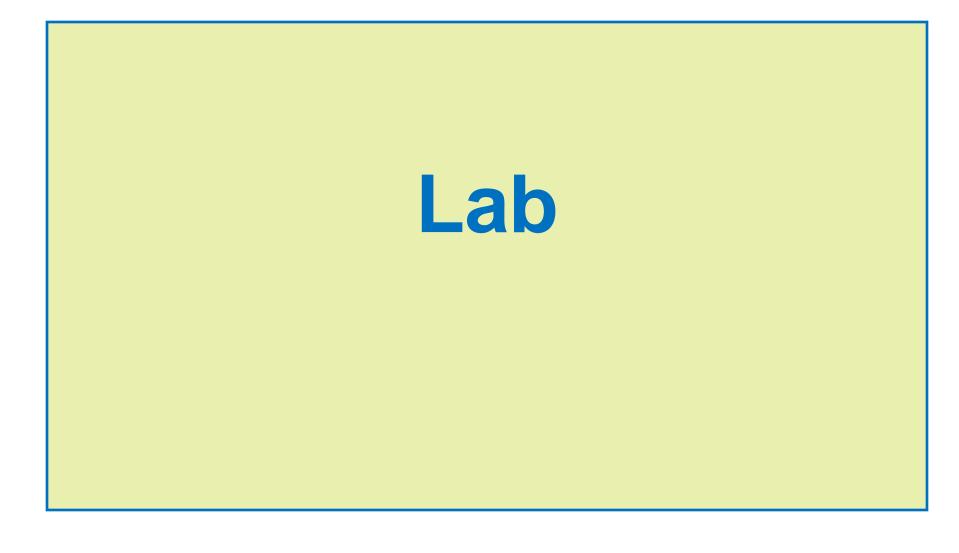
PIC16F684 Comparator Modes of Operation One Independent Comparator – CM<2: 0> = 101


Legend: A = Analog Input, ports always read '0' D = Digital Input

PIC16F684 Comparator Modes of Operation Two Common Reference Comparators with Outputs – CM<2: 0> = 110

Legend: A = Analog Input, ports always read '0' CIS (CMCON0<3>) is the Comparator Input Switch D = Digital Input

PIC16F684 Comparator Modes of Operation Comparators Off – CM<2: 0> = 111


Legend: A = Analog Input, ports always read '0' D = Digital Input

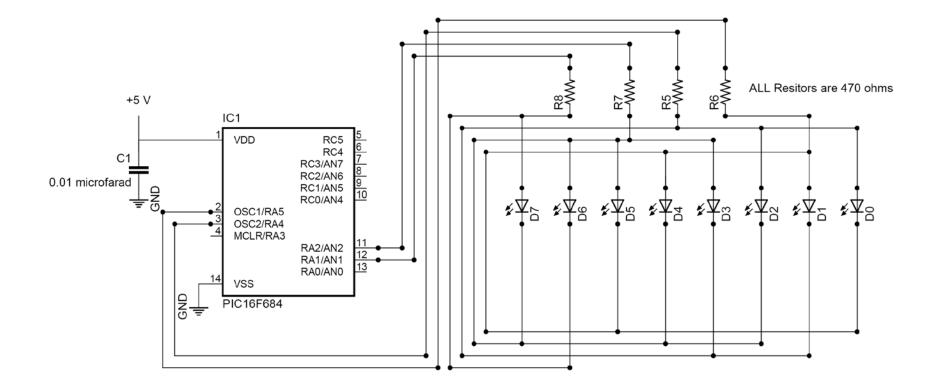
In Summary ...

Microcontroller Data Conversion Function

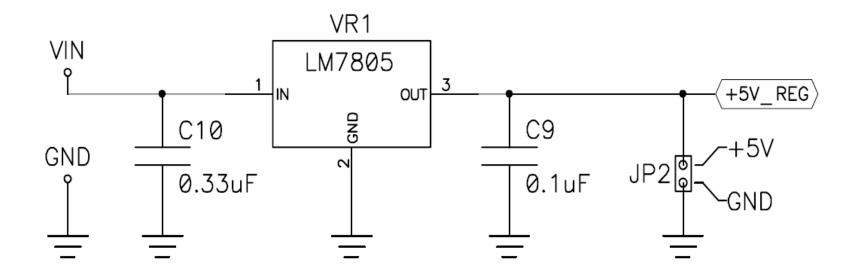
Summary

- The microcontroller can accomplish many of the functions that we have discussed this semester ...
 - Including ...
 - ADC
 - DAC
 - Comparators
- In many cases ... hardware configuration is much easier
- However ... software must be used in place of the hardware

Lab #5 ...

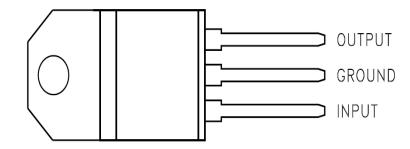

Lab # 5 – Overview

- Will compare the operation of the ADC0804 to that of the PIC16F684
- The PIC16F684 is pre-programmed
- Need to remember that ...
 - The ADC0804 is an 8 bit ADC
 - The PIC16F684 is a 10 bit ADC

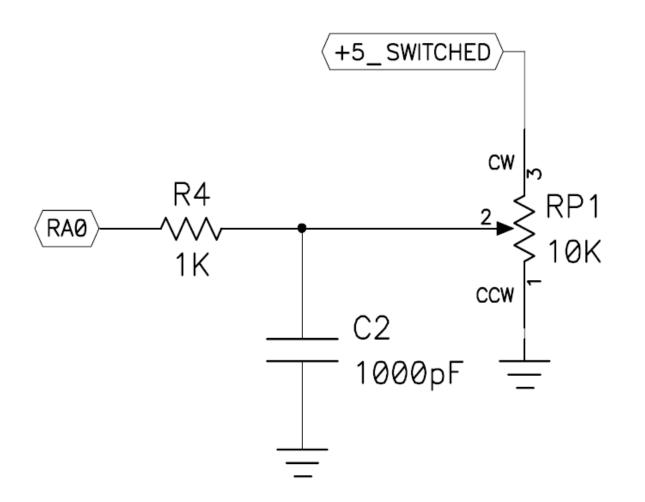

What the Pre-Programmed Code is doing ...

- Set the initial conditions
- Lights corresponding LEDs (represents the binary equivalent of the analog voltage)
- While in an Endless Loop ...
 - Checks to see if the A/D Conversion is complete
 - If it is ... Then ...
 - » Get the new conversion value
 - » Display the new value
 - » Start a new conversion
 - If still in the conversion
 - » Display the last result

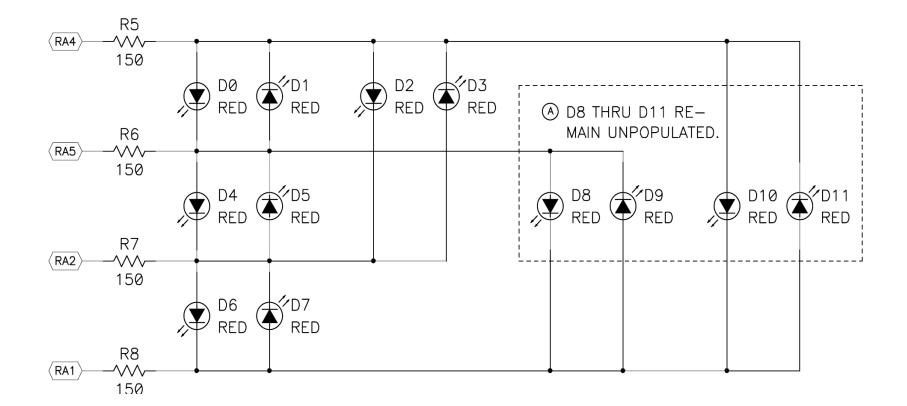
PIC16F684 and LED Output Connections



Voltage Regulator Circuit



LM7805 Pin Connections - Top View


LM7805 Pin Connections - Top View

RAO Analog Input

LED Connections

Lab #6 ...

Lab # 6 – Overview

- Voltage-to-Frequency conversion
- Frequency-to-Voltage conversion
- Input a signal into a VFC and convert it back via a FVC

• **READ THE DATA SHEET** ... this is one of the most informative data sheets I have used

Next Class

Next Class Topics

• Exam #2

Homework

Homework

- 1. Lab Reports are due as follows:
 - a) Lab Report (#6) Due 11/21/13
 - b) Course Projects
 - c) Study for Exam!!!!

Time to start the lab...

• Start/continue with Lab #6

Questions?